The Modulational Instability for a Generalized Korteweg–de Vries Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Modulational Instability for a Generalized KdV equation

We study the spectral stability of a family of periodic standing wave solutions to the generalized KdV (g-KdV) in a neighborhood of the origin in the spectral plane using what amounts to a rigorous Whitham modulation theory calculation. In particular we are interested in understanding the role played by the null directions of the linearized operator in the stability of the traveling wave to per...

متن کامل

The Modulational Instability for a Generalized Korteveg-DeVries equation

We study the spectral stability of a family of periodic standing wave solutions to the generalized KdV (g-KdV) in a neighborhood of the origin in the spectral plane using what amounts to a rigorous Whitham modulation theory calculation. In particular we are interested in understanding the role played by the null directions of the linearized operator in the stability of the traveling wave to per...

متن کامل

Modulational instability in the dynamics of interacting wave packets: the extended Korteweg-de Vries equation

This paper is concerned with interacting wave packet dynamics for long waves. The Kortweg-de Vries equation is the most well-known model for weakly nonlinear long waves. Although the dynamics of a single wave packet in this model is governed by the defocusing nonlinear Schrödinger equation, implying that a plane wave is modulationally stable, the dynamics of two interacting wave packets is gove...

متن کامل

Nonlinear Instability of a Critical Traveling Wave in the Generalized Korteweg-de Vries Equation

We prove the instability of a “critical” solitary wave of the generalized Korteweg – de Vries equation, the one with the speed at the border between the stability and instability regions. The instability mechanism involved is “purely nonlinear”, in the sense that the linearization at a critical soliton does not have eigenvalues with positive real part. We prove that critical solitons correspond...

متن کامل

Azimuthal modulational instability of vortices in the nonlinear Schrödinger equation

We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schrödinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasione-dimensional azimuthal equation of motion, and then applying a stability analysis in Fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2009

ISSN: 0003-9527,1432-0673

DOI: 10.1007/s00205-009-0270-5